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Abstract: Discontinuous systems have been increasingly paid attention since they can be found ranging from physical to biological
systems. In this paper we consider an effective estimation algorithm for systems with discontinuous vector field. We propose an incorporation
between the existing recedinghorizon nonlinear Kalman filter (RNKF) and the unscented transformation, which is named receding-horizon
unscented Kalman filter (RUKF). The use of unscented transformation is beneficial to discontinuous systems since it does not require partial
derivatives as does the linearization technique which may incur severeness at discontinuity. An application of this algorithm to a system with
discontinuous friction is considered to illustrate its performance in comparison with the classical unscented Kalman filter (UKF).

1. INTRODUCTION

With great challenge in engineering problems and
echnologies, many researchers increasingly pay attention on
discontinuous systems which are widely seen ranging from
physical to biological systems, such as system with friction
[1], dynamical network with switching topology [2], and
iological neural networks [3]. Due to highly nonlinear
property on discontinuity, there are significant problems
such as inaccurate computation (chattering) and various
types of trajectory behavior which cannot be handled by
using classical analysis like Lipschitz functions. There are
riches of analysis on semistability, multistability and
bifurcation in the form of differential inclusion using
Filippov’s convex method, [2], [3]. However, estimation of
the prescribed systems has not been widely investigated. In
our paper, we account for stochastic model for such systems
and estimationproblems are considered.

Kalman filter and extended Kalman filter (EKF) are very
powerful approaches as they have been applied to various
advanced engineering problems for more than three decades.
Because EKF is applied to nonlinear systems, it has been
widely used for prediction, navigation systems, adaptive
control, robust control, system identification and many other
areas [4]. Despite its usefulness, many researchers have tried
to find other nonlinear filtering approach. [5] proposed
unscented Kalman filter (UKF). It has, later, been roved
more robust than EKF in several cases [6]. In addition, it can
incorporate highly nonlinear systems including system with
discontinuous vector field since the propagation of
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prediction can be done via unscented transform which is
derivative free.

Based on continuous-time limit with respect to time step,
[7] derived continuous-time unscented Kalman filter, later
called unscented Kalman-Bucy filter (UKBF) and analyzed
by [8], and derived continuous-discrete unscented Kalman
filter (CDUKF). In addition, the latter one is proved to
outperform discrete UKF by showing simulation result of
reentry vehicle tracking problem. In our previous work, it
was successfully applied to highly uncertain systems with
multiple discontinuities [9]. In this work, we consider a
control system with uncertain model of discontinuous
friction as in [9]. We propose an estimation algorithm
incorporating the existing receding-horizon nonlinear
Kalman (RNKF) [10] with unscented transformation, which
is called “recedinghorizon wunscented Kalman filter
(RUKF)”. The central idea of RNKF is based on augmented
state in the horizon interval, and, thus, it is able to handle
systems with constraints. For linear unconstrained systems,
it was shown that the current estimate is the result of Kalman
filter and the other previous estimates are the result of
optimal smoothing. [11] gave the general fixed-lag smoother
which employed Rauch-Tung-Striebel smoother equations.
The difference from the RNKF and RUKF is that the
smoothed estimates are computed after all the Kalman filter
estimates are known. [12] also proposed an algorithm for the
same purpose. However, the algorithm is given in a creative
way, but not based on principle.

This paper is organized as follows. In the next section,
we investigate behavior of chattering around sliding surface,
and we bring up an approach of Filippov’s convex method to
obtain accurate computation when state variable orbits along
sliding surface. In Section 3, we will point out the problem
formulation of discrete time filtering, and we introduce the
formulation of RUKF algorithm. To show the robustness of
the algorithm, numerical simulation results and discussions
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of an application example is given in Section 4. We sum up
our work in Section 5.

2. COMPUTATION OF FILIPPOV SYSTEM

In this section, we will specifically investigate
computational behavior of a dynamical system where the
vector field involves discontinuities. We illustrate the
existence of chattering if we use conventional method to
compute the corresponding discretized system, and we also
give a solution to avoid chattering by approximately define
average vector field around discontinuities using Filippov’s
convex method. This section, therefore, deals with numerical
method to improve accuracy of computation which is
independent from the estimation algorithm presented in the
rest of the paper.

2.1. Chattering

Consider a state equation of a deterministic system
following,

i(t) = f(z,1) (1)

where z € R™, and f(x,t) is discontinuous vector field. Let
¥ be a set of discontinuity surface described by a scalar
smooth function a(x). Then it is defined by ¥ = {z €
R" | o(z) =0}

A discontinuity surface that the system state of (1) orbits
along is called sliding surface.  Numerically,
chatteringaround the surface is incurred, which is illustrated
in Fig. 1. Chattering of one dimensional system is studied by
[13]. In this paper, we investigate namely trajectory error
due to chattering for n-dimensional system using Euler
method whose computation induces largest error in
comparison with Rung-Kutta and other numerical
integration methods. Euler approximation of (1) is, then,
written as

Ti+1 = Tk + [, te) At (2)

where At is sampling time.

(k+1)At

4

Fig. 1. Orbit of state along sliding surface

Suppose that (1) has continuum equilibria along sliding
surface, i. e. f(zs,t) = 0 for x; € X. Then, the system
state, theoretically, reaches the continuum equilibria in finite
time for any xzo € R™ [13], [14]. For (2), assume that a

right sampling time At#’ is selected in such way that at time
k*At’, the state xp- reaches the surface X. Then, we obtain
fl(zg-,tp=) = 0, and thus

Tpsg1 = Tge= (3)

which means that the computational state never leaves the
surface once it reaches, and, hence. it does not generate
trajectory error. However, in practice, we never find the right
sampling time, so the computational state does not reach the
surface, but instead, it bounces around the surface.

Consider trajectory error €(xp) around a sliding surface
¥, which is generated by neighborhood xp, € Bs(xs), where
x, € X and 4 is positive. We, thus, have f(x,,7) # 0, where
7 is corresponding time at which computational state of (2)
becomes ;. We define

e(zy) = o(Tps1)
= o(zp + f(xp, T)AL).

It is often the case to consider that maximum trajectory error
around a sliding surface can be defined by

(4)

€max = SUp (sup sup |o(x; —l—f(i‘,.T)Af-”) (5)
e, €L \7>0 zi—x,

if At is small enough, and f(x,7) is smooth for x € Bs(xs)

except its center. For autonomous system, f(z,t) = f(x),

then (5) becomes

€max = SUP ( sup |o(x; +f(.r7-)At)|) ! (6)

r,€EX 2T,

2.2. Filippov Approach

For the vector field of the dynamical system (1), assume
that there are N discontinuity surfaces ¥; described by N
scalar smooth functions ;(x). Then the vector field can be
rewritten as [15],

N
F(2,8) = forig(2, 1) +ZA,~(.r.r)p,(.v) (7)
i=1
where
i [ Uj(.‘.l") =0,
fi(x) = [0,1], o(x) =0, (8)

The introduced base vector field forig(2,t) is defined from
the vector field when o;(x) < 0 for all i, and the individually
additional term A;(z,t) can, then, be defined using the
condition a;(z) > 0 in (8).
The introduced base vector field forg(x,t) is defined from
the vector field when o;(x) < 0 for all 4, and the individually
additional term A;(x,t) can, then, be defined using the
condition a;(x) > 0 in (8).

To define p;(x) when the system (1) is sliding, we must
consider that the system state may orbit along two or more
sliding surfaces simultancously. Let S be a set of index
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of sliding surface along which the system state orbits and
Ns be total element number of S. Then the condition
%f(;t,t) = 0 for ¢ € S must hold. By using (7), this
condition can be elaborated as

N
60’( )fong( t) + &gi‘“) > Aw(@, k() =0, (9)
= k=1
Denote
{al:---~ONs}_{nu’l(m)} {ﬁl Ns}—{al }
{1, vs} = {Ai(x, 1)} (10)

for i € S. From (9) and (10), we obtain

o By, ... BBy, 17!
QaNg ai;‘::j 2 SR _t)%;'ﬁ TNs
%f(r t)
X ; (11)
8 fa 1)
where
— n(orlx)) + 1
fz,t) = fug(z, ) + D Axlz t) gn ( )

ke{N\b}

It is considered that p;(z) defined by (10) and (11) may
satisfy pi(x) ¢ [0,1] which means that the system state is
not constrained to the i™ discontinuity surface. Denote §' =

{ie S| pi(z) ¢ [0,1]}. Thus, (7) can be rewrilten as
f@.t) = fugz.t) + > Afa ,)"‘?"(‘71:(2-1‘-)) +1
i€{N\S)
+ ) Ada (e +ZA:.'___(JL‘%_)1
1e{S\5'} ies’

For computation of system involving discontinuity, chat-
tering always occurs around sliding surface since the system
state never reaches any sliding surface in finite time, as
explained in the previous subsection. In order to improve
computational accuracy, we define an interval for sliding
surface as |o;(x)| < €. where ¢ is a threshold which is
computed by (5) or (6); and a term of attraction to the
sliding surface is added to the average vector field defined
in (12). Therefore, approximation of average vector field can
be written as

F@t) = foiglat) + 3 A,-(a-.f}w

ie{N\S}

+ > A,(-,c.:.)p.(.r)+Z.f_\,u.s.)im(-}‘r”—“
i€{S\8’}) ies* 5

- 3 Co) (d"‘(”)

ie{S\5'}
(13)

where Cj is positive if the condition |al
and it is zero otherwise.

x)| < € is satisfied:

3. RECEDING-HORIZON UNSCENTED KALMAN
FILTER

In most practical applications, state equation of a dynam-
ical system is stochastically modeled as

(t) = f(x,t) +e(t) (14)

where z(t) € R™ is state; e(t) is white Gaussian noise:
and f(x,t) is called drift function, which is discontinuous.
The solution of the differential equation (14) is however
continuous. This equation can be discretized as

(k+1)At
Tpy1 = T + / flx, t)dt + vy,
kAt (15)

= F(zy, ty) + v,

where vy, is Gaussian noise with known covariance matrix
Q). The accuracy of (15) can be assured if the selected At
is small, and the stability of estimation can be improved by
using extra additive process covariance, AQ (see [8]). The
general measurement equation is modeled in discrete time as

Yk+1 = H(Tk+1) + wi (16)
where ¥y € RP is measurement, H is measurement model
function and wy, is measurement noise assumed to be Gaus-
sian with known covariance matrix R.

Recently, [10] introduced the RNKF in which the
Kalman filtering framework is extended to include a
receding horizon in an optimization framework. The time
update of this algorithm, however, engages linearization
which is not compatible with discontinuous systems. We
propose a receding-horizon unscented Kalman filter which
incorporates the receding horizon framework with unscented
rapsformation as follows.

Initialization Step

The same as RNKF, RUKF starts after a window of h
measurements are obtained. At any time instant k, denote
Mp_p|k—p and Pk,h‘k,h as mean and corresponding co-
variance matrix respectively, both of which are assumed
available. The first estimation problem is solved at time
k = h, and it, thus, requires initialized mean and covariance
at time k = 0, which are denoted as xq and P, respectively.
For the time £ = 1,....,h, the estimates can be obtained
with variable window sizes accordingly.

Let ny, be the number of augmented state over a window
size h. Then ny, = nh, and the associated weights for sigma
points corresponding to the augmented state are defined as
following

A

H{r(mh)
ip + Ap
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V /\h

W(ﬂh)z gl e
4 nh+)\n+(1 “ +Id) (17)
1
wims) — =1 20
b 2(nn + An)’ .
1
'VV-(C")=7. = s 2N
C T3t o

where A\, = a?(ny, + &) — ny,. The positive constants a. 3
and k are the unscented Kalman filter parameters. For ease of
reading, we will present our whole algorithm in matrix form
to calculate mean, covariance and cross-covariance matrices,
which are associated with the following weight matrices,

Wmp = [Wo(mh) T W’émh)]
Wéch)

W= - [wm, - Wm,])

i
4 g
X (I = [wmh ke 'wmh]) s

(18)

These weight matrices are used to compute mean and
covariance from the sample sigma points, where the full
explanation can be found in [7].

Time Update Step
Let us consider the time update of the state estimation
over window size h, starting from filtered estimates at time
k. Denote my, ;. and Py be a posteriori of the mean and its
error covariance matrix at time k respectively, both of which
are available. The predicted estimates for all the states in the
time interval [k + 1,k + h] are obtained by the ‘open loop’
propagation of sigma points via the state equation (15). The
propagated sigma points are augmented as

a T T £
Xt = [Xk+h|k(k +1) - X (b + h)] , (19)

and the augmented mean corresponding the augmented sigma
point is denoted as

T
T:'lg_*_hlkz|:’in'£+h|k(k+1)---7?l{+h‘k(k+h)] . (20)

Then the predicted covariance matrix of the augmented states

P . at the time (k + h)*™ is defined by

Peimk+1,k+1) - PR (k+1,k+h)
pa. Pk +2,k +1) Prxm (k+ 2,k + h)
k+hjk — . . .
Pk +hk+1) oo PINA (k4 h "Al + h)
(21

The block diagonal matrices of (21) represent the error
covariance matrices in the open loop state estimates, whereas
the off-diagonal matrices are the cross-covariance between
the open loop state estimation errors at different time instants.

1 o F bk ele o ] i a a P (]
All the block elements of X, . mi_,, and P, , €

R"P*1h defined in (19) to (21) are computed using unscented

weh atl BpC - N e a i a R
transformation. The *" element of Xk+h|k and TR pype ATC

respectively calculated by the followings,

Xpgnp(i—1) = [mk+h|fc(i = 1) -mpypp(i — 1}]

+ve [0 V Peinp(@—1) =/ Ponpli - 1)]

.Y;\-_-_h”.-(f) =F (A-k—-h;.i.'“ — 1). tk—;—r—l) . and
Mtk (t) = Xegn e (D) wm, -

(22)
where ey = ny+A; and F'is the propagated function defined
in (15). Then, the #i*" diagonal block element of Peipp is
calculated along with the i'" element of .-\’;fﬂlk as

Py 8) = XieineOW1 X5 i (0) + Q. (23)

The upper triangle clement of P, . ie. Py (2, j) where
i < j, is defined by

P inp(i:3) = X () Wi X it ppe (7) (24)
The complete upper triangular blocks of P} +hk €an now be

calculated with these recursive relationships when the first
block Ps+h|k(1, 1) is initialized with

Pope(1,1) = X W X + Q. (25)

where Xjp is defined in terms of my and Py by the

é : . Ry 5 :
formulation of the first equation in (22). Since Pk+h|k Is

symmetric, the lower triangle blocks are the transpose of
the upper ones.

Measurement Update Step

The predicted estimates of the augmented states are updated
using all the measurements in the time window [k + 1; k + h]
based on, again, unscented transformation.

Yern = [y" (k+1)--y" (k + )]
Then the complete measurement update is as the follows
At = [mﬁ+h|k”'mﬁ+h|k]
* \/a[o \/Pi?+h|k - \/Pf+h\k]
= (A 27"

e (26)

Venn = [HA)T - HYT] 27
Yitnlk = VitnpWmp,
Py = Ve e Wa Y ki + B
Poy = X’?+h\kwhyakT-+th
= P:ypﬁy_l
Mg hjkrh = Mesnje + K Ykan — Yitnpe) (28)
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~a pa jraT
— KPR
Rv*P),

(a — (L
P eapesn = Plraje

where R® is given by diag(RP*P ...

4. APPLICATION TO FRICTION ESTIMATION
FOR ADAPTIVE CONTROL

In this paper, we consider an adaptive compensation of

static friction which is modeled as

Fr=(ao + e~ @W/we)? )sign(w) + asw, (29)

where w is angular velocity; ws is Stribeck velocity; ap+4ay
is static friction; aq is Coulomb friction; and a5 is coefficient
of viscous friction. We use the algorithm in Section 3 to
estimate the friction from a model of DC motor as following,

System{

RUKF

Fig. 2. Block diagram of adaptive control

w(t) = =[—sign(w), g )’ sign(w —w]a—}-— (30)

J
where o = [ao.al.og]"'. J is the total moment of in-
ertia of the motor and u is control torque, and ®(w) =
1/J[—sign(w), —e~©/“2)*sign(w), —w] is called basis func-
tion.

We simulate a control system which is illustrated by the
block diagram in Fig. 2. The desired position is 6.(t) =

o=

2.8sin(0.027t) sin(27t) whose shape is indicated in Fig. 3
and our simulation is run up to 400 seconds. All the friction
parameters used for our simulation are obtained from [16].
The augmented state and parameter to be estimated is z =
[w(t) a]”. We consider the case in which ws = 2.4, but
we simulate our system in two difference cases.

3 T
< Ll Il {" " ‘i ’HH'H i
Mw | n'n | H H I w‘ | il e
_ i il \ W) Iﬂ |

Time [s]

Fig. 3. Tracking reference

First, we use unbiased basis function which means that we
choose the same (s = 2:4 for estimator. The performance of
tracking control obtained from using both UKF and RUKEF is
shown in Fig. 4. It indicates that tracking error using UKF is
larger, especially at low velocity, (around 0, 50 and 100
seconds, the trajectory in Fig. 3 has small amplitude, and so
does the velocity). This is because the parameters of
frication are not well estimated, as shown in Fig. 5. On
sliding surface (at zero velocity), the system was shown
unobservable by [9], and, therefore, both estimations
diverge. However, convergence can be recovered when
velocity is away from zero. Fig. 5 indicates that parameter
estimationnusing RUKF is less sensitive than using UKF
because, like RNKF, RUKF has the optimal smoothing

property.

0.04 fevvennnns .......... .........

0,021 - U S

il o
it .1 '|,r‘ly}\\|‘r". 1“\.‘!‘

—0.02 -+

Tracking error [rad]
o

_0|04 .......... :..‘i ......... :
0,06+ P |

0,04
0.02

-0.02
004 T e :
~0.06 - R P ]

Tracking error [rad]
o

(b)
Time [s]

Fig. 4. Tracking performance for unbiased model: (a) using UKF and (b)
using RUKF with h = 4
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Fig. 5. Parameter estimation for unbiased model: actual (blue) and estimate
(pink); (a) using UKF and (b) using RUKF
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Second, we select we = 0.01 for estimation algorithm,
meaning that biased basis function is used. as considered in
[9]. The temporal evolutions of estimated parameters, &(t) =
[0 én dg]T. are no longer constant, which are illustrated
by estimation result in Fig. 6 and 7. The parameters, ag
and @ have fairly periodic form over 50 seconds which is
the haft period of sin(0.027t), so that we only show them
over the last period. Whereas, the parameter &; seems to
reach the steady state after about 70 seconds. The results of
friction estimation and tracking error are shown in Fig. 8
and 9 respectively. Compared to the result using UKF, the
perfomm]nce of using RUKF is slightly better as indicated in
Fig. 9.

0.8 : ‘ :
0.6F - ---e - e " ‘4-n ....... Fasamapmapui. e e 4
5 : Ittt T
g 3 : " s
[T | 1 | R — S S Foarmnhe ! § i (TR
0P, st ‘ To————°
02 i ; i ;
3350 360 310 380 390 400
Time (s)
Fig. 6. Time-evolution of parameter (h = 4): o (pink) and &2 (blue)

5. CONCLUSIONS

To handle estimation problem of discontinuous systems, in
this paper computational accuracy around discontinuity
surface of a discretized system is investigated, and
Filippov’s approach is used to improve the computational
accuracy for such systems. Moreover, we propose an
estimation algorithm, receding-horizon unscented Kalman
filter which extends the framework of the existing receding-
horizon nonlinear Kalman filter incorporated with unscented
transformation.

8 0.6F i H | V’W{
g !JI : :
S 04 e fnde, RTINS PO buresennd
0.2
0 A N S N
0 150 200 250 300 350 400

Time (s) B

Fig. 7. Time-evolution of parameter (h = 4): &y

The details of the algorithm consisting of initialization, time
update and measurement are explained. The algorithm is
pointed out to be compatible with discontinuous systems. To
clarify robustness of the proposed algorithm, an application
to friction estimation for adaptive control is considered. In

comparison with the classical UKF, simulation of using
RUKEF shows applaudable results.

2

=
£
=
D6 3265 327 3275 328 3285 329 3295 330
Time (s)
Fig. 8. Friction: black line is actual one: red line is estimation

Tracking error [rad)

004l S S S N
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Fig. 9. Performance for bias model: (a) using UKF and (b) using RUKF
with h =4
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